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Abstract Gap junctions are key components underpin-

ning multicellularity. They provide cell to cell channel

pathways that enable direct intercellular communication

and cellular coordination in tissues and organs. The chan-

nels are constructed of a family of connexin (Cx) mem-

brane proteins. They oligomerize inside the cell, generating

hemichannels (connexons) composed of six subunits

arranged around a central channel. After transfer to the

plasma membrane, arrays of Cx hemichannels (CxHcs)

interact and couple with partners in neighboring attached

cells to generate gap junctions. Cx channels have been

studied using a range of technical approaches. Short pep-

tides corresponding to sequences in the extra- and intra-

cellular regions of Cxs were used first to generate epitope-

specific antibodies that helped studies on the organization

and functions of gap junctions. Subsequently, the peptides

themselves, especially Gap26 and -27, mimetic peptides

derived from each of the two extracellular loops of conn-

exin43 (Cx43), a widely distributed Cx, have been exten-

sively applied to block Cx channels and probe the biology

of cell communication. The development of a further series

of short peptides mimicking sequences in the intracellular

loop, especially the extremity of the intracellular carboxyl

tail of Cx43, followed. The primary inhibitory action of the

peptidomimetics occurs at CxHcs located at unapposed

regions of the cell’s plasma membrane, followed by inhi-

bition of cell coupling occurring across gap junctions.

CxHcs respond to a range of environmental conditions by

increasing their open probability. Peptidomimetics provide

a way to block the actions of CxHcs with some selectivity.

Furthermore, they are increasingly applied to address the

pathological consequences of a range of environmental

stresses that are thought to influence Cx channel operation.

Cx peptidomimetics show promise as candidates in

developing new therapeutic approaches for containing and

reversing damage inflicted on CxHcs, especially in hypoxia

and ischemia in the heart and in brain functions.

Keywords Connexin hemichannels � Peptidomimetics �
Clinical translation

Introduction

Gap junctions are cell–cell connections that ensure har-

monious integration, regulation and equalization of meta-

bolic events and signaling in tissues and organs. Their role

in the coordination of cell behavior is vividly illustrated in

the heart, where gap junctions in the intercalated discs

provide pathways that allow direct intercellular electrical

communication essential for synchronous contraction of

component myocytes and for generating waves of rhythmic

contractions observed in arteries. Gap junctions are con-

structed of paired connexin hemichannels (CxHcs), each

composed of six protein subunits arranged around a central

pore, and occur at adhesive areas where plasma membranes
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touch. Hcs are continuously recruited from surrounding

unapposed plasma membrane areas and subsequently dock

head to head with partners from adjacent cells and attach to

the rims of preexisting gap junction plaques. The opera-

tional area and size of gap junction plaques where inter-

cellular communication occurs are regulated by a balanced

internalization and degradation of the dodecameric Cx

channel units (Laird 2006; Goodenough and Paul 2009).

Many approaches have been applied to study the struc-

ture and function of gap junctions and their constituent

CxHcs (Harris and Locke 2009). This account deals with

the development of peptides that correspond to specific

short Cx sequences that block widely the operation of gap

junctions and CxHcs. The consequences ensuing from the

actions of these peptides on Cx channels are allowing

research to move forward into the realms of translational

innovation across many fronts, especially in addressing the

pathological consequences of ischemic stress that induces

the channels to become leaky. Peptidomimetic approaches

are complemented by gene knockout and antisense siRNA

approaches to study Cx-based communication.

The development and application of short peptides

mimicking sequences in various protein domains of Cxs,

especially Cx43, initially focused on the two loops pro-

jecting outside the cell membrane; but peptides corre-

sponding to sequences in the cytoplasmic intracellular loop

and carboxyl tail are now finding application. Over the last

25 years, mimetic peptides have become important tools in

elucidating a panoply of roles for gap junctions and their

constituent CxHcs in a wide range of cells, tissues and

organs. These are summarized in Tables 1, 2 and 3.

Development and Exploitation of Cx Mimetic Peptides

Following the deduction of the complete amino acid

sequences especially of Cx32 and Cx43, two of the 20

members of the Cx family of proteins, a number of short

mimetic peptides were chemically synthesized and coupled

to immunogenic carriers to generate antibodies to target

specific domains and epitopes. The two highly conserved

extracellular loops of Cx have proven to be poorly

immunogenic, and it has been difficult to generate anti-

bodies to these domains. Nevertheless, antibodies to both

extracellular loop domains have been used in studies of a

wide range of functions underwritten by Cx channels.

These include (1) the topographical arrangement of Cx

proteins in the membrane (Zimmer et al. 1987), (2) the

roles of gap junctions in the development of mouse

embryos (Becker et al. 1995), (3) Ca2? wave signaling

across cell layers connected by gap junctions (Boitano

et al. 1998), (4) subcellular assembly of gap junctions

(Rahman et al. 1993), (5) coordination of Ca2? transients in

beating cardiac myocytes (Verma et al. 2009b), (6) Cx43 as

a candidate component of the immunological synapse

(Mendoza-Naranjo et al. 2011), (7) the functional impor-

tance of the two exposed extracellular loops (Goodenough

et al. 1988), (8) CxHc organization in polarized cells (Clair

et al. 2008) and (9) tracking conformational changes as Cx

traffic from the Golgi apparatus to gap junctions (Sosinsky

et al. 2007). Antibodies to peptides from intracellular

regions have been used extensively as diagnostic immu-

nological/analytical tools and are widely available from

commercial sources.

Although reagents such as heptanol, octanol, oleamide,

lithium ions, quinine derivatives, carbenoxolone, fena-

mates, anandamide, oleamide, triarylmethanes and glyc-

yrrhetinic acid inhibited gap junctional communication

(Herve and Dhein 2010; Juszczak and Swiergiel 2009;

Bodendiek and Raman 2010), there remained a need for

more specific reagents with a known mechanism of action.

From early on, it became evident that Cx mimetic peptides

used to generate the antibodies to gap junctions might

prove useful as chemical tools to manipulate channel

operation; it was argued that the utility of antibodies was

restricted by their size and limited penetration across the

cell membrane and into intercellular regions where gap

junctions are located. Such drawbacks would be overcome

by using small mimetic peptides that could penetrate into

intercellular junctions, disrupt the docking and/or operation

of hemichannels and, thus, target the gap junction (Fig. 1).

Two studies using model systems marked the beginning

of the exploration of Cx mimetic peptides as tools to study

gap junction functions. The first took advantage of the

contractile behavior displayed by embryonic chick heart

myoballs and known to require coordination provided by

intercellular communication via gap junctions. The effects

of a series of 15 Cx peptides, corresponding to short

sequences mainly in intra- and extramembrane amino acid

regions of the tetraspan membrane protein in delaying gap

junction functions, were determined (Warner et al. 1995). A

parallel study that used six dodecapeptide Cx mimetics to

interrupt communication across gap junctions generated in

Xenopus oocytes transfected with RNA to Cx32 (Dahl et al.

1994) likewise pointed to the potential of using short

peptides to tamper with Cx-dependent intercellular com-

munication. Warner et al. (1995) pinpointed motifs that

included short sequence motifs, SRPTEK in extracellular

loop 1 and SHVR in extracellular loop 2, as likely potent

peptides for use in disrupting cell communication. These

motifs were later incorporated into Gap26 and -27 mimetic

peptides and their close homologues (see Tables 1, 2, 3).

Kwak and Jongsma (1999) used dye coupling and dual

patch-clamp approaches to study the inhibition of Cx

channels using peptide mimetics from the second extra-

cellular loop of Cx43 and Cx40. An extensive literature has
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since built up around the study of Cx-dependent cell

communication processes, especially with peptides mim-

icking sequences in Cx43 and, to a lesser extent, Cx40 and

Cx37, which are widely expressed in the vascular system as

well as with Cx32 (De Bock et al. 2011). Gap26 and -27

have emerged as mimetic peptide tools that have entered

the literature in studies that explore the operation and

function of Cx channels in several settings (Tables 1, 2). As

discussed below, the blockage of direct cell coupling across

gap junctions (Evans and Boitano 2001) is now likely to be

a secondary event that follows initial interaction of the

peptides with CxHcs. Recent work is increasingly focused

on the translational and therapeutic possibilities offered by

the action of the mimetic peptides, especially in averting or

reversing tissue damage in ischemia and inflammation.

Gap Junctions and CxHcs

The view that CxHcs possess functions in their own right

and are able to operate in different modes from gap junc-

tions has now become generally accepted (Goodenough and

Paul 2003; Bennett et al. 2003; Evans et al. 2006). CxHcs

were detected in Xenopus oocytes (Ebihara and Steiner

1993), a test bed to study gap junction expression and

function and where the channels were observed to open in

low-Ca media. Hc opening was also detected in vertebrate

retinal dendrites (Malchow et al. 1993). These early studies

appeared against the background view that CxHcs sustained

in open configuration in membranes would lead to poten-

tially catastrophic cellular outcomes by allowing trans-

membrane escape from cells of small intracellular signaling

molecules, e.g., ATP and glutamate, and would result in a

collapse or dissipation of ionic gradients. The possible

importance of CxHcs operating under normal physiological

situations in cells and tissues was critically evaluated

(Spray et al. 2006). Collateral evidence for the functional

reality of CxHcs began to appear later for roles in pathology

with, e.g., the demonstration that leaky mutated CxHcs in

the ear were linked to deafness (Stong et al. 2006; Scott and

Kelsell 2011) and a mutation in the intracellular loop of

Cx43 that decreased single-channel conductance and is

linked to neurological disturbances in oculodentodigital

dysplasia (Lai et al. 2006). Reconstituted Hcs were used to

Table 1 Examples of the use of Gap26 and -27 mimetic peptides in studying the functions of gap junctions and connexin hemichannels in

tissues/organs, cell layers and slices

Test model Peptide Effects Reference

Arteries Gap26/27 Block rhythmic contractions Chaytor et al. (1997)

Mesenteric arteries Gap27 Attenuates hyperpolarization Dora et al. (1999)

Endothelium Gap27 Attenuates Ach relaxations Hutcheson et al. (1999)

Arteries Gap26/27 Block EHF signaling Chaytor et al. (2005)

Kidney Gap27 Blocks renal vasodilatation De Vriese et al. (2002)

Heart tissue Gap26 Aids recovery after hypoxia Hawat et al. (2010)

Heart lateral ventricle Gap27a Aids recovery after ischemia Davidson et al. (2012)

Arteries Gap27 Lowered intercell resistance Matchkov et al. (2006)

Lung capillaries Gap26/27 Inhibit Ca waves Parthasarathi et al. (2006)

Trophoblasts/fibroblasts Gap26/27 Block bilayer signaling and reduce DNA damage Bhabra et al. (2009)

Various cell barriers Gap27 Blocks signaling across barriers Sood et al. (2011)

Brain endothelial and MDCK

epithelial cells

Gap27 Inhibits Ca oscillations De Bock et al. (2012)

Leukocytes Gap27 Inhibits ATP release Eltzschig et al. (2006)

Hippocampus Gap27 Impairs learning, memory Bissiere et al. (2011)

Hippocampus slices Gap27 Inhibits epileptiform activity Samoilova et al. (2008)

Rat amygdala Gap27 Induces amnesia Stehberg et al. (2012)

Spinal cord Gap27a Reduces swelling, reduces neuronal cell death O’Carroll et al. (2008)

Optic nerve Gap27 Attenuates CNS injury Chew et al. (2010)

Hippocampus Gap27a Decreases cell death Yoon et al. (2010)

Lung Gap26 Reduces neutrophil transmigration Sarieddine et al. (2009)

Various cells Gap26 Blocks microtissue assembly Bao et al. (2011)

Skin model systems Gap27 Increased migration and proliferation Pollok et al. (2011)

Gap26, VCYDKSFPISHVR; Gap27, SRPTEKTIFI
a Gap27 analogue. See Table 2 for sequence. A Gap27 acting on Cx40 channels (SRPTEKNVFIV) has been used on vascular tissues where this

Cx is expressed
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investigate the influence of Ca and atomic force micros-

copy, to study Hc pore opening (Thimm et al. 2005). It is

now generally accepted that CxHcs open under environ-

mental circumstances considered to be stressful to cells

such as volume or osmotic changes; oxidative, metabolic

and mechanical stresses; and especially hypoxia/ischemia.

If not contained, leaky CxHcs can lead to apoptosis and

cell death (Saez et al. 2010; Decrock et al. 2009a, b).

Binding of mimetic peptides such as extracellular loop

peptides Gap26 and -27 to the extracellular face inhibited

functions associated with CxHcs; these are also regulated

by membrane depolarization, phosphorylation of several

sites on the carboxyl tail of Cx43 (Solan and Lampe 2009),

S-nitrosylation (Retamal et al. 2006) and SUMOylation of

lysine residues in the intracellular loop (Kjenseth et al.

2012). The particle–receptor hypothesis (see below)

explained the mechanics of gating in those Cxs with

extended cytoplasmic tails such as Cx43, Cx40 and Cx45

(Delmar et al. 2004). Recent evidence suggests that

mimetic peptide perturbation of intracellular domains,

especially the interactive cytoplasmic loop (CL) and the

carboxyl tail (CT), also influences Hc functions (Ponsaerts

et al. 2010). CxHc gating is also conditioned by signaling

cascades operating in subplasmalemmal environs (Fig. 2).

Besides structural differences, with Hcs being asym-

metrical and gap junctions being symmetrical double

channels, there are other important differences between the

functions of these weakly selective channels. CxHcs stand

out in being responsive to environmental changes and

contingencies. Gap junction channels allow the cytoplasms

of cells to be linked directly, whereas open CxHcs provide

channels connecting the cell’s external environment with

Table 2 Examples of use of Gap 26 and 27 mimetic peptides on various cells in culture

Test model/cells Peptide Effect References

Skin fibroblasts, keratinocytes Gap27 Increases migration in diabetes Wright et al. (2012a, b)

HeLa Cx43 GFP Gap26/27 Inhibit dye transfer Berman et al. (2002)

Lymphocytes Gap26/27 Inhibit transendothelial migration Oviedo-Orta et al. (2002)

T/dendritic cells Gap27 Cell sensitization abrogated Ring et al. (2010)

Mesenteric smooth muscle Gap27 Attenuates hyperpolerization Dora et al. (1999)

Alveolar epithelial Gap27 Inhibits Ca signaling Boitano and Evans (2000)

Alveolar epithelial Gap26/27 Inhibit dye transfer Isakson et al. (2003)

Neonatal myocytes Gap26 Inhibits ATP release in ischemia Clarke et al. (2009)

HeLa/cardiac cells Gap26/27 Inhibit Ca uptake and Ca waves Verma et al. (2009b)

CD4? T lymphocytes Gap27 Inhibits T-cell proliferation Oviedo-Orta et al. (2010)

B and T lymphocytes Gap26/27 Decrease antibody production Oviedo-Orta et al. (2010)

Corneal Gap26 ATP release and Ca waves blocked Gomes et al. (2005)

Ganglia Gap27a Limits retinal ganglion injury Danesh-Meyer et al. (2012)

Neural retinal Gap26 Limits ATP release and development Pearson et al. (2005)

Astrocytes Gap27 Abolished NMDA excitotoxicity Froger et al. (2010)

Astrocytes Gap26 Blocks glutamate release Jiang et al. (2011)

Astroglia Gap26/27 Block glutamate release Orellana et al. (2011)

Glioma Gap26/27 Delay apoptosis, cell death Decrock et al. (2009a, b)

Astroglia Gap26 Influences neural inflammation Karpuk et al. (2011)

Glia Gap26/27 Inhibit ATP release De Vuyst et al. (2009)

Astroglia Gap26 Inhibits ATP release and activation of P2Y receptors Orellana et al. (2012a)

Astrocytes Gap26/27 Induce anhedonia, depression Sun et al. (2012)

Blood–brain barrier endothelium Gap27 Inhibits ATP release and permeability of endothelium De Bock et al. (2011)

AT11 Gap27 Inhibits Ca waves Isakson et al. (2001)

Endothelium Gap26 Inhibits ATP release Robertson et al. (2010)

Bladder cancer Gap26/27 Inhibit ATP release De Vuyst et al. (2006)

T lymphocytes 1,848b Blocks GJ docking Mendoza-Naranjo et al. (2011)

Cardiomyocytes Gap26 Blocks CxHc in cardiac hypoxia Shintani-Ishida et al. (2007)

Platelets Gap27 Blocks Cx 43/37 channels Vaiyapuri et al. (2012)

Bone marrow stem cells Gap27 Confirms Cx channels absent Yang et al. (2009)

a VDCFLSRPTEKT peptide 5 derived from extracellular loop 2 of CxHc43
b Sequence of the Cx mimetic peptide not disclosed
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the cytoplasmic mileu beneath the plasma membrane. In a

cell-signaling context, changes in CxHc open probability

provide a mechanism for paracrine intercellular commu-

nication by allowing small molecules such as ATP and K to

exit and Ca to enter cells. ATP release underwrites puri-

nergic intercellular signaling (Isakson et al. 2001; Paem-

eleire et al. 2000; Kang et al. 2008), a function shared with

pannexin channels.

Gap junction channels exist normally in open mode, and

an elevation in intracellular Ca2? leads to closure (gener-

ally 500–2,000 nM). In contrast, CxHcs open at 500 nM

(De Vuyst et al. 2006, 2009, 2011). Differences in Ca

sensitivity of the two channel types may relate to their

complementary roles in regulating intracellular Ca oscil-

lations and the intercellular propagation of Ca waves

(Verma et al. 2009a; Orellana et al. 2012b; De Bock et al.

2012). The various intracellular processes that influence the

gating of Cx43Hcs are shown in Fig. 2b. Gap junctions and

CxHcs respond differently to lipopolysaccharide and basic

fibroblast growth factor, a consequence of their involve-

ment in releasing ATP (De Vuyst et al. 2007); their channel

functions also respond differently to many growth factors

(Schalper et al. 2012).

Widespread Use of Gap26 and Gap27 Mimetic Peptides

Cx43 is by far the most widely distributed Cx in tissues and

organs. It is therefore not surprising that Gap26 and -27,

derived from Cx43 sequences, have found extensive use. A

modified Gap27 peptide (Table 1) incorporating a

sequence mimicking that in Cx40 has also proven useful in

vascular tissues and other tissues where both Cxs are

present (Chaytor et al. 1999; Wright et al. 2009). Early

studies showed that inhibition by mimetic peptides was

largely reversible as assessed by intercellular transfer of

small fluorescent ‘‘reporter’’ dyes of varying size and by

Table 3 Effects of various intracellular Cx mimetic and other short and mainly Cx43 peptides on gap junctions and hemichannels

Test model Peptide Effect Reference

Brain synapses Carboxyl tail Prevents Cx36/GJ formation Flores et al. (2012)

Bladder cancer Gap24a Inhibits ATP release De Vuyst et al. (2006)

Mouse hearts Carboxyl tailb Increases Cx43 and ps368

phosphorylation

and induces arrhythmia

O’Quinn et al. (2011)

Heart Carboxyl tail May open gap junctions Lewandowski et al. (2008)

Heart R, any amino acid May open gap junctions Verma et al. (2009b)

Cardiac mitochondria Gap27 Inhibits Cx43 Rottlaender et al. (2012)

T lymphocytes Gap20c Ineffective on gap junctions Mendoza-Naranjo et al. (2011)

Endothelium- denuded arteries Gap20c Ineffective on gap junctions Chaytor et al. (1997)

C6 glioma cells L2 segment nonapeptide Blocks CxHc but not gap junctions Wang et al. (unpublished)

Corneal endothelial and C6 glioma

cells

TAT-L2 Blocks CxHc but not gap junctions Ponsaerts et al. (2010)

Basolateral amygdala Cx43-L2 TAT Blocks gliotransmitter release Stehberg et al. (2012)

MDCK CT9 peptideb Carboxyl

tail

Blocks Ca oscillations by removing

high Ca closure

De Bock et al. (2012)

a Gap24: a Cx32 Gap20 homologue GHGDPLHLEEVK (from intracellular loop)
b Peptide RPRPDDLEI
c Gap20 EIKKFKYG

Gap 26/27

Closure at ~ 3min
Cx43 Hemichannels

Cx43 junction channels
Closure at ~ 3min or longer

Fig. 1 Mechanism of action of Gap26 and -27 mimetic peptides.

Peptides bind to extracellular loop regions one and two, respectively,

of CxHc, causing closure of channels within minutes. At later time

intervals (30 min or longer) and depending on factors such as cell

confluency, tissue, organ, tissue slice origin and thickness and

conditions of perfusion of various organs, peptides permeate into

intercellular spaces in gap junctions, causing disruption and dimin-

ished cell coupling. CxHcs with attached peptide move laterally

toward the rims of gap junction plaques as they assemble and are then

internalized
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measuring the extent of Ca wave propagation over multiple

rows of cells (Boitano and Evans 2000).

As the operational presence of CxHcs became evident,

inhibition by mimetic peptides of ATP release in a wide

range of tissues and cells (Tables 1, 2), of glutamate in

astrocytes (Yang et al. 2009) and astrocytes/microglia

(Orellana et al. 2011) and of ion trafficking, especially Ca2?

entry, were observed. Uptake of reporter dyes across CxHcs

became a reliable and routine method to demonstrate open

or leaky CxHcs (Li et al. 1996). A range of other effects

were also noted on prolonged exposure (20 min or longer)

to the mimetic peptides such as smooth muscle contraction

in endothelium-denuded arteries (Chaytor et al. 1997;

Hutcheson et al. 1999) and immunoglobulin production by

lymphocytes (Oviedo-Orta et al. 2001). Subsequently, as

the presence of CxHcs widened, it became increasingly

clear that the primary action of Gap26 and -27 is in fact

directed at CxHcs. Nevertheless, a combination of direct

signaling across gap junctions and paracrine signaling act-

ing through metabotropic purinergic receptors following

release of ATP (Fig. 2) provides scope for complementary

intercellular interplay involving both routes in several set-

tings (Anselmi et al. 2008; Cotrina et al. 1998).

Initial experiments showing inhibition by mimetic pep-

tides of CxHcs were carried out mainly using cultured cells

(Table 2), followed by numerous examples in various tis-

sues and organs, cell layers and thin tissue slices (Table 1).

The growing attribution of nonjunctional properties to

CxHcs (Cotrina et al. 2008; Kameritsch et al. 2011) has led

to studies that attempt to unravel the potential functions in

the realms of adhesion and cell movement. Enhancement

of migration of dermal fibroblasts after treatment with

Gap27 pointed to nonjunctional roles for CxHcs in cell

movement and extending, e.g., to assessing their potential

translational application in addressing their efficacy in

accelerating wound healing in diabetes and in a range of

micro-/macrovascular diseases (Wright et al. 2009, 2012a;

Pollok et al. 2011). Gap27 increased migration of human

keratinocytes and dermal fibroblasts, and the efficacy of the

mimetic peptide was different in euglycemia and hyper-

glycemia (Wright et al. 2012b). Gene array approaches

indicated that Gap27 induced upregulation of genes

involved in extracellular matrix remodeling and cell

adhesion. Exposure of cells to Gap27 may have effects on

Cx43 phosphorylation, especially of serine 368; phos-

phorylation of this amino acid decreases Cx43 channel

activity (Solan and Lampe 2009) and is a key process in the

gating of Cx43 channels. Many of the effects of the

mimetic peptides were seen after long-term exposures.

Cx43 has been detected in the inner mitochondrial mem-

brane of heart cells and has been implicated in cardiac

preconditioning (Boengler et al. 2009; Rottlaender et al.

2012). The opening of mitochondrial CxHc influences K?

fluxes in processes that are linked to cardioprotection. The

functions of Cx43Hc at this location are open to study

using mimetic peptides developed to Cx43 cytoplasmic

sequences (Verma et al. 2009a).

Mechanism of Action of Cx Mimetics

To further develop and refine the actions of Cx mimetics, it

is important to gain insight into the mechanisms by which

they block Cx channels. A major advance was the dem-

onstration that the primary action of Gap26 and -27 was

likely to be on CxHcs prior to blockage of gap junctions.

With the acceptance that CxHcs and gap junctions were

targets but in different time frames, the effects of the

peptides on both were examined using electrophysiological

approaches. These had already proven useful in studying

Fig. 2 a Several intracellular signals and events influence CxHc

functions. Membrane depolarization above ?30 V opens Hc. Several

kinases may also be involved; PKC closes Hc, while p38MAPK and

calmodulin kinases result in Hc opening. The cytoplasmic Ca

concentration ([Ca2?]i) is also an important modulator; below

500 nM [Ca?] calmodulin is a key Ca binding protein and specific

binding sites are present on Cx. An increase in intracellular Ca causes

Hc opening, while Hc activation is lost at higher concentrations.

Arachidonic acid stimulates Hc opening, and amino acid metabolites

generated by PLA2 activation may contribute to this. Nitric oxide and

oxidative stress also result in opening of Hc. Figure modified from De

Vuyst et al. (2009). b a Sites on the exposed extramembrane regions

of Cx43 where the mimetic peptide sequences originated. b Proposed

intramolecular mechanism of CxHc gating involving interaction of

the carboxyl tail with the intracellular loop. c Binding of a

nonapeptide mimetic derived from L2, the Cx43 intracellular loop

region to a site on the carboxyl terminus regulates the closure of

CxHc and leads to blockage of the channel
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electrical coupling across gap junctions in cell pairs and the

electrical properties of CxHcs (Harris 2001; Contreras et al.

2003; Saez et al. 2005). Using a voltage-clamp approach in

nonconfluent and confluent HeLa cells expressing Cx43,

Gap26 inhibited macroscopic currents through CxHcs in

2–3 min. In contrast, electrical coupling in cell pairs was

delayed and completely inhibited after 30 min or more

(Desplantez et al. 2012), indicating direct action of Gap26

on an exposed extracellular loop, as previously suggested

by studies of CxHcs inserted into lipid bilayers (Liu et al.

2006). The extended time course of action on gap junc-

tional electrical coupling suggests that longer diffusion

pathways into plasma membrane junctional domains lead

ultimately to blockage of gap junctional coupling (Fig. 1).

The changes in conductance and voltage gating of CxHcs

by Gap26 suggested interaction of the peptide at a con-

sensus sequence in the first extracellular loop that may

contribute to the inner wall of the pore (Sosinsky and

Nicholson 2005), resulting in a decrease in channel diam-

eter in the extracellular vestibule. Desplantez et al. (2012)

also proposed that, of the two voltage gates controlling Hc,

the slow gate is the more likely to be influenced by the

binding of Gap26.

An expanded complementary study by Wang et al.

(unpublished) examined the mechanism of action of Gap26

and -27 in HeLa cells stably transfected with Cx43 and in

pig ventricular myocytes endogenously expressing Cx43

using a voltage-clamp approach. Both mimetic peptides

inhibited Cx43Hc unitary currents within minutes. An

important outcome of this study with cardiac translational

implications was that unitary current activity was promoted

by a moderate elevation of cytoplasmic Ca, an event

observed in cardiac arrhythmogenesis.

Gap26 and -27 have been used mainly to inhibit Cx43

channels, but actions on other Cx channels have also been

studied. For example, Wright et al. (2009) carried out an

extensive study of the effects of Gap26 and -27 on dye

coupling in cells expressing several human Cxs and found

that Gap27 had broader Cx specificity than Gap26. In some

situations where multiple Cxs are expressed, as in skin,

broad specificity can be an advantage.

The precise protein domains to which Gap26 and -27

mimetic peptides attach and any conformational changes

induced in Cx channels remain to be determined. Fluo-

rescently labeled Gap26 and -27 are poorly soluble; but

evidence points to attachment and retention at cell exteri-

ors, and problems of image resolution could not answer the

issue of whether attachment of a mimetic peptide ligand to

a ‘‘channel receptor’’ sequence can lead to peptide inter-

nalization (Evans, unpublished work). Voltage-clamp

approaches have been useful in deciphering the inhibitory

action of these peptides on Cx channels and go a long way

toward resolving questions concerning the specificity of

mimetic peptide inhibitory effects. Cx mimetics have been

claimed as effective inhibitors due to steric pore block

(Wang et al. 2007). Steric block may indeed occur, but

recent data indicate that it only occurs when peptides are

used in the range of 1 mM and above (Wang et al.

unpublished). The examples shown in Tables 1 and 2 used

mainly protein concentrations of 100–250 lM. In the vast

majority of these studies, investigators have used scram-

bled peptides or short peptides derived from regions

believed not to be directly involved in channel operation

(often internal sequences) as controls and, in each instance,

they pointed to a high sequence dependence of mimetic

peptide action in blocking gap junctional coupling and,

more recently, ATP release or dye entry across CxHcs.

Pannexins, of which three are identified compared to

around 22 in the Cx family of proteins, also form oligo-

meric channels with a similar tetraspan topographical

arrangement in the membrane to CxHcs. However, these

two protein families share no amino acid homology. Pan-

nexins, unlike Cxs, are posttranslationally glycosylated

(D’Hondt et al. 2009; Scemes et al. 2009) and are disin-

clined to dock with partner pannexins on neighboring cells.

It follows that they are not expected to generate gap

junction-like structures and, indeed, are found at higher

levels inside cells (D’Hondt et al. 2011). In contrast, a

recent report claims that they can form gap junctions and

act as Ca leak channels in the endoplasmic reticulum (Is-

hikawa et al. 2011). Pannexins are relatively unaffected by

changes in cytoplasmic Ca2? levels and, unlike Cx, are

calmodulin-insensitive. Pannexins are especially abundant

in neural tissues. The action of Gap26 and -27 on pannexin

channel currents has not yet been rigorously tested. It is

worth noting that high sequence diversity occurs in the

intracellular loop of Cx proteins; the carboxyl tail of larger

Cx proteins also varies in length, sequence and the extent

of posttranslational modification.

Small peptides generally have little structural organi-

zation but may assume some on binding to a target that

then becomes subject to conformational change. Studies of

the interaction of calmodulin with mimetic peptides from

the intracellular loop of Cx43 demonstrate a way forward

toward functionally dissecting this key region of Cxs

(Myllykoski et al. 2009). A calmodulin binding region in

Cx43 was located to amino acid residues 136–158 (Zhou

et al. 2007). Clearly, further knowledge of the structural

organization of Cx43Hc is awaited along the lines available

on CxHc26 (Maeda et al. 2009; Oshima et al. 2011).

Table 3 lists the growing number of mimetic peptides

derived from the CL and CT that act on CxHcs and gap

junctions. Many of these peptides are not able to cross

the plasma membrane. To gain access to their sites

of action, many of these mimetics need to be attached

first to ‘‘Trojan’’ cell-penetrating peptides that contain a
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membrane-translocation motif (Jarver and Langel 2006).

Intracellular loop mimetic peptides with a positive charge

due to several lysine residues stand out as candidates, for

they can, depending on length, gain access to intracellular

targets without need for attachment of a membrane-pene-

trating peptide or by microinjection, as discussed below.

Indeed, peptides of around 1 kDa or less may be able to

access the cytoplasm via open CxHcs.

Mimetics and Other Cx Peptides as Agents to Address

Pathology

In a cardiac context, blockage by Gap26 and -27 of gap

junctional coupling between myocytes negated their can-

didacy for use, especially in therapeutic approaches to

address cardiac arrhythmia, for the outcomes of peptide

treatment were likely to compound the pathology. Conse-

quently, studies in heart focused on nonmimetic hexapep-

tides shown to be prorhythmic, especially ZP123 derived

from AAp10 and later renamed rotigaptide (Hagen et al.

2009; Herve and Dhein 2010). This hexapeptide promoted

changes to Cx phosphorylation, increased gap junctional

coupling (Clarke et al. 2006) and showed promise in ani-

mal models, where it prevented ventricular tachycardia in

myocardial ischemia (Xing et al. 2003). However, fol-

lowing inconclusive clinical trials, rotigaptide was not

developed further. Cellular studies showed that despite its

prorhythmic action on gap junctions, ZP123 also led to the

opening of CxHcs, causing ATP release. In a cardiac

myocyte ischemia model, Gap26 blocked the release of

ATP, whereas ZP123 enhanced its release across Cx43Hc

(Clarke et al. 2009). Other antiarrhythmic peptides—such

as Gap134, a prorhythmic dipeptide—were also developed

(Hennan et al. 2009).

In the meantime, encouraging outcomes in addressing

ischemic cardiomyopathy using Gap26 have appeared.

These results can be explained by the direct action of this

mimetic peptide on CxHc rendered open under hypoxic/

ischemic conditions. Hawat et al. (2010) showed that fol-

lowing myocardial ischemic insult, Gap26 helped to confer

protection through its binding to and blockage of Cx43Hc.

Similar protection from hypoxic stress by these peptides

has also been reported. Vascular leak and retinal ganglion

cell death were reduced by application of a close homo-

logue of Gap27 in an atrial ischemia model where Cx43Hc

expression was increased (Danesh-Meyer et al. 2012). The

same group also reported that infusion of Gap27 in a large

animal model with cerebral injury delayed the onset of

ischemic injury and suggested that Gap27 homologue

peptides reduced inflammation. For example, mimetic

peptide treatment reduced the spread of damage after

traumatic spinal cord injury where Cx43Hc plays a critical

role (O’Carroll et al. 2008; Huang et al. 2012). Such studies

combine to show that Gap26 and -27 mimetic peptides

acting on CxHc-related functions, especially in situations

of tissue injury, show therapeutic potential. In brain, inhi-

bition of inflammation-induced activation of Cx43Hc in

astroglial cells was attenuated by treatment with Gap26 and

-27, suggesting that the channels play a critical role in

instigating neuronal death and pointing to a neuroprotec-

tive role for these mimetic peptides (Froger et al. 2010).

Interaction of the mimetic peptides with CxHcs is also

likely to modify intracellular signaling cascades in subpl-

asma membrane environments (Fig. 2a).

The action of Gap26 and -27 on CxHcs and later at gap

junctions encouraged the view that pathological outcomes

could be fine-tuned if mimetic peptides were to become

available that confined their blocking action on CxHcs

resident in the plasma membrane. Attention had already

focused on the intracellular loop region implicated in

explaining gap junction gating in cardiac cells and

involving intramolecular interaction of the carboxyl tail

region with the intracellular loop L2 region (a region in

Cx43 incorporating amino acids 119–144) and described as

the particle–receptor hypothesis (Delmar et al. 2004). The

role of the L2 domain as a key molecular determinant of

Cx43 function originated from the acidification-related

closure of gap junctions (Delmar et al. 2004), and the

particle-receptor hypothesis has been proposed to explain

Cx43 closure during acidification, with the CT moving as a

flexible gating particle that binds to the L2 site at the

intracellular vestibule and leading to closure of the gap

junction pore. Because of the similarity to the inactivation

of K? channels, this mechanism has also been called the

ball and chain model of gap junction closure. A 34-amino

acid nonmimetic peptide (RXP-E) and its derivatives were

developed to target the Cx43CT (Shibayama et al. 2006;

Lewandowski et al. 2008; Verma et al. 2009a). When

coupled to cell-penetrating peptides, these composite pep-

tides successfully restored gap junctional coupling and

impulse propagation in cultured neonatal rat ventricular

cardiomyocytes. Although the ability of L2 peptide to bind

to the Cx43CT region has been intensively studied, less is

known about how it is influenced by pH.

Loop–tail interactions also control Cx43Hc opening

(Ponsaerts et al. 2010). The interaction of a cytoplasmic

loop domain with the C-terminal region is an important

requisite for the opening of Cx43Hc in response to stimuli

such as lowering of extracellular Ca2? or increasing

intracellular Ca2?. In contrast, Cx43 gap junctions behave

in the opposite manner and are closed by intramolecular

loop–tail interactions (Delmar et al. 2004; Hirst-Jensen

et al. 2007). Interfering with loop–tail interactions can

inhibit the operation of Cx43Hc. One way to suppress

CxHc operation in response to high intracellular Ca2+ is to

444 W. H. Evans et al.: Manipulating Cx Channels

123



activate the actomyosin contractile system, a process that

appears to physically dislodge the CT from the CL region

(Ponsaerts et al. 2012). Importantly, the selective myo-

sin11-ATPase inhibitor blebbistatin restores Cx43Hc

activity when cells are exposed to high intracellular Ca

(Ponsaerts et al. 2012). The proteins involved in this

mechanism linking Cx43Hc and the actomyosin contractile

system have not been identified, but a likely target is the

CT region of Cx43Hc, for Cx43 lacking the CT is inactive.

Even in the absence of a functional actomyosin cytoskel-

eton, loop–tail interactions in Cx43Hc can be disrupted

using mimetic peptides from the L2 region, and coupling

the peptides to a TAT cell-penetrating sequence inhibits

CxHc opening. An important interactive target of L2-

region peptides is the last 10 amino acids of the carboxyl

tail (CT10). Direct binding between the L2 domain and

CT10 has been demonstrated by surface plasmon reso-

nance. Thus, TAT-L2 allows exploitation of the opposite

regulation of gap junctions and Cx43Hc and can provide a

route to selectively inhibit Cx43Hc while maintaining gap

junctional communication. The importance of the 10–

amino acid terminal carboxyl domain has been studied in

detail also using electrophysiological approaches in Xeno-

pus oocytes where the TAT-L2 and TAT-CT10 peptide

constructs have been crucial in analyzing and deciphering

intramolecular loop–tail interactions (Ponsaerts et al. 2010,

2012). These studies illustrate how mimetic peptide

approaches for selectively studying the physiological

functions of Cx43Hc can complement knockdown/knock-

out approaches in, e.g., processes leading to cell death

(Decrock et al. 2011) and in brain functions in the baso-

lateral amygdala, where Cx mimetic peptides such as

Gap27 demonstrate that Cx43Hc activities are implicated

in amnesia (Stehberg et al. 2012).

A short nonmimetic peptide (designated RXP-E) that

bound to the carboxyl tail of Cx43, derived from heart

lysates and studied in animal and cellular models, pre-

vented action potential block in the heart (Lewandowski

et al. 2008). A series of nonmimetic peptides with a motif

designated RXP and containing a predominance of basic

amino acid increased the mean open time of gap junc-

tion channels; these peptides were proposed as potential

functional regulators in ischemia-induced arrhythmias

(Shibayama et al. 2006; Verma et al. 2009a).

Currently, the application of novel short peptides mim-

icking sequences in the L2 region of Cx43 (Delmar et al.

2004) where a putative calmodulin binding site is identified

(Zhou et al. 2007) proceeds. One major aim is to design

mimetic peptides that confine their blocking actions to

CxHcs with no interference on gap junction functionality,

thus avoiding pro-arrhythmic consequences and allowing

the bound mimetic peptide to arrest, e.g., the loss of vital

cell metabolites via CxHcs in cardiomyocytes subject to

hypoxia or ischemia perfusion injury. A potential tool for

more selective inhibition of Hcs without associated inhi-

bition of gap junctions is a synthetic mimetic peptide

corresponding to the L2 region that, when delivered into

the cell by a whole-cell recording pipette, prevented gap

junctional opening to the subconductance state at high

transjunctional voltage and increased the channel open

time (Ponsaerts et al. 2010). Also, L2 peptide linked to the

TAT membrane translocation motif (TAT-L2) inhibited

Cx43Hc activation, further suggesting that prevention of

interaction of CT and CT suppresses Hc opening. Conse-

quently, the particle–receptor hypothesis described above

has an opposite outcome for Hcs compared to gap junc-

tions. This raises questions concerning why this is so, for

the composite proteins of the channels are identical but the

Ca sensitivity of the Cx43Hc and gap junctions differs. It

now appears that intracellular interactive partners may also

be different at the cytoplasmic aspects of junctional and

nonjunctional regions of the plasma membrane. One pos-

sible reason for these differences is that Hcs interact with

the actomyosin contractile system, causing dynamic loop–

tail interactions that control Hcs that differ from those

occurring at gap junctions (Ponsaerts et al. 2012).

New mimetic peptides derived from the carboxyl tail of

Cx43 are also being assessed. Here, peptide mimetic

design has to deal with a region where the CT interacts

with cytoskeletal elements (Herve et al. 2011; Palatinus

et al. 2011). This region also incorporates several phos-

phorylation sites that condition channel gating (Solan and

Lampe 2009). In the heart, the cytoskeletal adaptor protein

ankyrin-G interacts with Cx43 and is a likely key inter-

calated disc complex in the pathophysiology of arrhyth-

mias (Sato et al. 2011). A short Cx43-CT peptide

incorporating the last nine amino acids and linked to a cell

permeabilization sequence inhibited pathological changes

at gap junctions that are related to ventricular arrhythmias

(O’Quinn et al. 2011). This peptide disrupted the interac-

tion between the PDZ domain of ZO1 and Cx43, thus

accelerating assembly of gap junctions from a precursor

pool of Hcs (Hunter et al. 2005; Rhett and Gourdie 2012).

The peptide also enhanced PKC-epsilon-associated phos-

phorylation at the Cx43-S368 site, an effect that is acti-

vated in ischemic preconditioning and can reduce cardiac

injury (Ek-Vitorin and Burt 2012; Srisakuldee et al. 2009).

A similar peptide with the same sequence named CT9

prevented high Ca–induced closure of Cx43Hc (De Bock

et al. 2012; Ponsaerts et al. 2012). In the same vein, a

15–amino acid mimetic peptide derived from a sequence in

the CT of Cx36 modified gap junction conductance in

goldfish electrical synapses, and this peptide was injected

intradendritically (Flores et al. 2012).
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Concluding Comments

Peptides that mimic short sequences in extramembrane

domains of Cx proteins show huge potential in addressing

Cx-based communicationopathies by pharmacological

means. The functions attributed to Cx, especially Cx43,

continue to expand and include not only roles in intercellular

cell communication effected by CxHc and gap junctions but

also cell adhesion, cell migration and mitochondrial inner

membrane channel functions. It is likely that the range of Cx

mimetics and their applications will increase, for they pro-

vide activation mechanisms for manipulation of intercellular

signaling and communication. Furthermore, the peptides can

also help cells protect themselves from events emanating

from leaky channels, events that may ultimately lead to

apoptosis. Intriguingly, in the brain the Gap26 and -27

mimetic peptides that act mainly on astrocyte Cx channels

have been shown to affect depression (anhedonia), epilep-

tiform activity, memory consolidation and amnesia, further

emphasizing the importance of Cx-mediated communication

and signaling in a wide range of settings.
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